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14.1. Introduction

In spite of its great fundamental interest and commercial importance one of
the most important unsolved problems in the area of elastorners and rubberlike
elasticity is the lack of a good molecular understanding of the reinforcement
provided by fillers such as carbon black and silica [1 51. More specifically, the
reinforcement of elastomers is an interesting aspect in the basic research of
nanocomposites in general, and is of much practical importance since the ml-
proverneiits in properties fillers provide are critically important with regard to
the utilization of elastomers in almost all commercially significant applications.
Some of the work on this problem has involved analytical theory [6- 121. but
most of it is based on a variety of computer simulations [13 461.

In this context, the present review describes one way in which computa-
tional modeling has been used to elucidate the structures and properties of
elastorueric polymer networks. One of the main goals has been to provide
guidance on how to optimize the mechanical properties of an elastorner, in the
present case by the incorporation of reinforcing fillers.

In the present approach, the simulations focus on the ways the filler particles
change the distribution of the end-to-end vectors of the polymer chains making
up the elastomeric network, from the fact that the filler excludes the chains
from the volumes it occupies. The changes in the polymer chain distributions
from this filler "excluded volume effect" then cause a.ssociated changes in the
mechanical properties of the elastomer host matrix. Single polymer chains are
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modeled, in the standard rotational isomeric state representation [47 49]. and
Monte Carlo techniques are used to generate their trajectories iii the vicinities
of collections of filler particles. A brief overview of the approach is given in
the following Section.

14.2. Description of simulations

14.2.1. Rotational isomeric state theory for conformation-dependent
properties

In rotational isomeric state models, the continuum of rotations occurring about
skeletal bonds is replaced by a small number (generally three) of rotational states
that are judiciously chosen. Preferences among these states are then characteriz-
ed by Boltzmann factors as statistical weights, with the required energies
obtained by either potential energy calculations or by interpreting available
conformation-dependent properties in terms of the models. Multiplication of
matrices containing these statistical weights is then used to generate the
partition function and related thermodynamic quantities, and multiplications
of similar matrices containing structural information are then used to predict
or interpret various properties of the chains [47-49]. Examples of such properties
are end-to-end distances, radii of gyration, dipole moments, optical anisotropies,
etc. as unperturbed by intramolecular excluded volume interactions between
chain segments [50].

14.2.2. Distribution functions

The extension of these ideas most relevant in the present context is the use of
this model to generate distributions of end-to-end distances, instead of simply
their averages [51]. The same statistical weights were used in Monte Carlo simu-
lations to generate representative chains, and their end-to-end distances, r, were
calculated. The corresponding distribution function was obtained by accumu-
lating large numbers of these Monte Carlo chains with end-to-end vectors within
various space intervals, and dividing these numbers by the total number of
the chains, N. The distances were then placed into a histogram to produce
the desired end-to-end vector probability distribution function, P( r) or P( r/ n10),
where ii is the number of skeletal bonds of length 1 . The histogram generally
consisted of 20 equally spaced intervals over the allowed range 0 <.(r/n1(,) K 1,
since previous studies showed that this choice was the most suitable for obtain-
ing probability distribution functions [52]. The function P(r/n10 ) was smoothed
using the IMSL (International Mathematics and Statistics Library) cubic spline
subroutine CSINT (Cubic Spline INTerpolant). The smoothing procedure is
necessary for the proper calculation of the stress-strain isotherms from the
Monte Carlo histogram [52].

These distributions are very useful for chains that cannot be described by
the Gaussian limit, specifically chains that are too short, too stiff, or stretched
too close to the limits of their extensibility [51]. Iii particular, they have
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documented how inadequate the Gaussian distribution is for short chains of
polyethylene and poly(dimetliylsiloxalle) (PDMS) particularly in the region
of high extension that is critical to an understanding of ultimate properties.

14.2.3. Applications to unfilled elastomers

The present application of these calculated distribution functions is the predic-
tion of elastomeric properties of the chains within the framework of the Mark-
Curro theory [51.53] described below.

The distribution, P(r), of the end-to-end vectors, r, is directly related to
the Helmholtz free energy, A(r), of a chain by

A(r=c—kTlnP(T),	 (14.1)

where c is a constant. The resulting perturbed distributions are then used in
the "three-chain" elasticity model [54] to obtain the desired stress-strain iSO-

thenins in elongation. For the specific case of this model, the general expression
for AA takes the form

= ^ A(,rba) + 2A(iöa ) - 3A(ru)	 (14.2)

for elongations that are "affine" (in which the molecular deformations parallel
the macroscopic deformation in a linear manner). Here, n is the elongation

ratio L/L, v is the number of chains in the network, and r is the value of
root-mean-square end-to-end distance of time mideformed network chains.

One quantity of primary interest here is the nominal or engineering stress,
f, defined as the elastic force at equilibrium per unit cross-sectional area of
the sample in the undeformed state:

f 

—T aAAj

^ ao

(14.3)

Substitution of Eq. 14.2 into Eq. 14.3 then gives

= -'	 1(m)_d'(ro)1	 (14.4)

where G(r) = lnP(r), and G'(r) denotes the derivative dC/dr. The modulus

(or "reduced stress") is defined by [f*] f*/( _ n) and is often fitted to the

Mooney-Rivlin semi-empirical formula {f*] 2C, + 2C2(1-1 [54-56], where

C 1 and C9 are constants independent of deformation i.
Such results are often shown as Mooney-Rivlin plots [51], in which the cal-

culated values of the reduced stress or modulus normalized by the value given by
time Gaussian limit are shown as a function of reciprocal elongation. In a test
case, the value of unity was obtained for long chains, in this case those having

Ti = 250 skeletal bonds, as expected. In the case of shorter chains (having n =
20 or 40 skeletal bonds) there were upturns in modulus with increasing elonga-
tion that were similar to those shown in bimodal networks in which short chains
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are introduced to give advantageous increases in ultimate strength and modulus
[57-59].

14.2.4. Applications to filled elastomers

In this case, the same Monte Carlo simulations were carried out as was done
for the unfilled networks, but now each bond of the chain was tested for overlap-
ping with a filler particle as the chain was being generated [28]. If any bond
penetrated a particle surface, the entire chain conformation was rejected and
a new chain started. Some specific illustrative examples of such investigations
are given below.

14.3. Spherical particles

14.3.1. Particle sizes, shapes, concentrations, and arrangements

The particle sizes of greatest interest are those used commercially, with small
particles giving significantly better reinforcement than larger ones. The primary
particles are generally assumed to be spherical. The concentrations or "load-
ings" in the simulations are generally relatively small, smaller than those used
commercially, since larger concentrations lead to unacceptably high attritions
from chains running into particles. In actual filled elastomers, the particles are
dispersed at least relatively randomly, but it is of interest to do simulations
on regular particle arrangements as well [28].

14.3.1.1. Regular arrangements, on a cubic lattice

In these simulations, a filled PDMS network was modeled as a composite of
cross-linked polymer chains and spherical filler particles arranged in a regular
array on a cubic lattice [14,40]. The arrangement is shown schematically in
Figure 14.1. The filler particles were found to increase the non-Gaussian
behavior of the chains and to increase the moduli, as expected. It is interesting
to note that composites with such structural regularity have actually been
produced [60,61]. and some of their mechanical properties have been reported
[62,63].

Figure 14.1. Schematic view of a polymer chain being generated within a series of filler
particles in cubic arrangements
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14.3.1.2. Random arrangements, within a sphere

In a subsequent study [16], the reinforcing particles were randomly distributed,
as is illustrated in Figure 14.2. The system was taken to be a sphere having a
radius equal to the end-to-end distance of the completely stretched out chain.
The chain being generated was started at the center of the sphere, and this
was the only place a filler particle could not be placed. Otherwise, the particles
required to give the desired loading were randomly dispersed over the sample
volume shown.

•
._ .

R(sphere) = n1.

./

Figure 14.2. Schematic view of a polymer chain and randomly-distributed filler particles.
The origin of the chain was placed at the center of the sphere of radius R(sphere) = ni
(maximum extension, All the filler particles were placed randomly in non-overlapping
arrangements within the sphere, except of course at its center (where the chain started its
trajectory). Chain conformations that trespassed on any particle were rejected, and statistical
calculations were performed on the remaining, acceptable conformations

14.3.2. Distributions of chain end-to-end distances

Of greatest interest here is whether the particles cause increases or decreases
in the end-to-end distances, with this expected to depend particularly on the
size of the filler particles, but presumably on other variables such as their
concentration in the elastomeric matrix as well.

14.3.2.1. Typical results

Some illustrative results for filler particles within a PDMS matrix are described
in Figure 14.3 [16,40]. One effect of the particles was to increase the dimensions
of the chains, in the case of filler particles that were small relative to the dimen-
sions of the network chains. In contrast, particles that were relatively large
tended to decrease the chain dimensions. Since these changes in dimensions
arising from the filler excluded volume effects are of critical importance, it is
necessary to put them into a larger context.
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Figure 14.3. Radial distribution functions P(r) at T = 500 K for network chain end-to-end
distances obtained from the Monte Carlo simulations. The results are shown as a function
of the relative extension, r/rm, for PDMS networks having 50 skeletal bonds between cross
links [16]. The radius of the filler particles was 5A, and the values of the volume % of filler
present are indicated iii the inset

14.3.2.2. Relevant neutron scattering results

These simulation results on the distributions are in agreement with some subse-
quent neutron scattering experiments on deuterated and non-deuterated chains
of PDMS [64,65]. The polymers contained silica particles that were surface
treated to make them inert to the polymer chains, as was implicitly assumed in
the simulations. These experimental results also indicated chain extensions when
the particles were relatively small, and chain compressions when they were
relatively large. Increases in chain dimensions have also been recently reported
in scattering studies on heavily cross-linked polystyrene (PS) spheres introduced
as filler particles into a PS matrix [66].

14.3.2.3. Comparisons with some related simulations

Some recent dynamic Monte Carlo simulations have also reported increases
in chain dimensions in filled systems [67]. There have been several reports of
simulations, however, that have yielded results in disagreement with the describ-
ed simulations and the two corresponding scattering reports mentioned above.
The major difference in approach was the use of dense collections of chains
instead of single chains sequentially generated in the vicinities of the filler
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particles. Specifically, the simulations by Vacatello [18,38] and by Kumar et al.
[39] find chain dimensions that are either unchanged by the filler particles or
are decreased.

In a rather different type of simulation, Mattice et al. [68] generated par-
ticles within a matrix by collapsing some of the chains into domains that would
act as reinforcing filler. They found that small particles did lead to significant
increases in chain dimensions, while large particles led to moderate decreases,
in agreement with the single-chain simulations and scattering experiments.
These simulations parallel the already cited experimental scattering study of
PS spheres in a PS matrix [66].

It was suggested that the increases in dimensions could have come from
inadvertent increases in free volume. Specifically, collapsing some of the chains
into particles could decrease their packing efficiency (thus increasing the free
volume of the remaining polymer matrix). These remaining chains could then
expand into the new free volume, increasing their end-to-end distances. This
possibility was tested by arbitrarily increasing the free volume (at constant
numbers of chains) by decreasing the density by approximately 4% [69]. The
mean-square radii, <S2>natrjx, of the matrix chains did not change at all,
indicating that free volume changes were not important in this context.

14.3.2.4. Improvements in the model

Because of these discrepancies, the present simulations were refined in an
attempt to understand the differences described [35]. This involved (i) relocating
the particles periodically during a simulation, (ii) starting the chains at different
locations, (iii) using Euler matrices to change the orientations of the chains
being generated, and (iv) replacing the "united atom" approach by detailed
atom specifications. None of these modifications significantly changed the results
obtained. An additional modification, generating dense collections of chains,
is in progress [70].

14.3.2.5. Distributions of particle diameters

Also in progress are simulations to determine any effects of having multimodal
distributions of particle sizes [71]. Looking at this issue was encouraged by the
improvements in properties obtained by using bimodal distributions of network
chain lengths in elastomers [58] and thermosets [72], and bimodal distributions of
the diameters of rubbery domains introduced into some thermoplastics [73-75].

14.3.3. Stress-strain isotherms

There are two items of primary interest here, specifically increases in modulus
in general, and upturns in the modulus with increasing deformation. Results
are typically expressed as the reduced nominal or engineering stress as a
function of deformation. The area under such curves up to the rupture point
of the sample then gives the energy of rupture, which is the standard measure
of the toughness of a material [57].
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14.3.3.1. Typical results

Figure 14.4 shows the stress-strain isotlierins in elongation [16] corresponding
to the distributions shown in Figure 14.3. There are substantial increases in
modulus that increase with increase in filler loading, as expected. Additional
increases would he expected by taking into account other mechanisms for rein-
forcement such as physisorption, chernisorption, etc., as described below. Similar
studies can be found elsewhere [41-46].
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Figure 14.4. Normalized stresses calculated from the distributions shown in Figure 14.3

14.3.4. Effects of arbitrary changes in the distributions

One additional interesting result is the observation that in some cases, chain
compression can also cause increases in modulus. This is being clarified by
making some arbitrary changes in the distributions obtained and documenting
the effects these changes have on the corresponding simulated stress-strain
isotherms. For example, the curves can he shifted to lower and higher values
of the chain dimensions, as is illustrated by two of the curves in Figure 14.5
[40[. The "fitted curve" is produced as follows: the distribution of end-to-end
distances for the 500,000 Monte Carlo polyethylene chains of 50 bonds at 550 K
is fitted to a Gaussian curve and this curve is called "fitted". Then this curve
is shifted in different directions mathematically to obtain other representative
curves called left-shifted, right-shifted, and up-shifted.
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Figure 14.5. Arbitrary illustrative shifts in end-to-end distance distributions, to smaller and
larger values of r. Also shown is an arbitrary illustrative narrowing of an end-to-end distance
(listribution. at the same most-probable value of r

This gives the isotherms shown in Figure 14.6. which show the expected
increases in modulus when the chains are extended b y the filler excluded voliinie
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Figure 14.6. Normalized stresses inlm'imlated for the distribution shifts shown in Figure. 14.5
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effect, and decreases when the chains are compressed. Unexpected results are
obtained, however, when the distribution is narrowed at the same most-probable
value of the chain dimensions, as illustrated in Figure 14.5 [40]. The narrowing
causes the peak defining the most-probable value to shift upward to keep the
area under the curve the same, as is required. In this case, the change in the
shape of the distribution does indeed cause an increase in the modulus, as shown
in Figure 14.6. This is consistent with other simulations finding increases in
modulus even when the chains are compressed, since it demonstrates that the
mechanical properties can depend on subtle features of the distribution, beyond
merely some average value of the chain dimensions!

14.3.5. Some preliminary results on physisorption

Preliminary studies have been carried out to model the effects of physical
adsorption of some of the chains onto the particle surfaces [70] The goal was to
determine the relative importance of the two major effects expected. These are
the increase in the effective number of chains or cross links (which would certain-
ly increase the elastic force, stress, and niodulus), and the changes in the end-
to-end distances of the chains that are adsorbed (which could conceivably either
increase or decrease these elastomeric properties). Specifically, amorphous PE
chains having 50 skeletal bonds were Monte Carlo generated in the presence
of filler particles having 20 A diameters, with the first atom of each chain being
attached to the particle surface.

The reference case of "no adsorption" was treated as follows. After the
chains were generated, the conformations overlapping the filler were discarded.
Over 300,000 chain conformations survived and were kept for subsequent cal-
culations. For the "adsorption" case, any chain being generated that hut the filler
surface was assumed to have been adsorbed onto the surface. If the chain could
not escape the filler surface because of conformational constraints, then that
chain was discarded. Also discarded were chains that did not hit the filler surface
at all. Over 50,000 chains survived elimination, and were accepted as "adsorbed"
chains.

Every time a chain hit the filler surface, the number x of bonds adsorbed
onto the filler surface was taken to be either 1, 2, or 3 (described as 1-bond,
2-bond, and 3-bond adsorption). These bonds were assumed to be adsorbed
iii such a way that they formed a loop on the filler surface, so that the end-to-
end vectors of the adsorbed parts of the chains on the surfaces were zero (even,
tentatively, for the 1-bond adsorption case).

The results showed that if a chain had hut the filler surface, it did it 1.7
times per chain on the average. The first interesting difference between time
no-adsorption and the adsorption cases is the decrease in end-to-end distances
of the adsorbed chains, as is illustrated in Figure 14.7. When adsorption occurr-
ed, then the PE should he stretchable to higher elongations before its modulus
increased markedly. This is shown iii Figure 14.8. Similarly, as is shown in
Figure 14.9, the moduli of the adsorbed chains were lower. This suggests the
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Figure 14.7. The distribution function of the end-to-end distance for PE chains of 50 bonds,
with a filler radius of 20 A at 550 K
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PE chains described in Figure 14.7
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induced changes in chain conformations were less important with regard to
these mechanical properties than the increases in the effective number of chains
or cross links resulting from the adsorptions.

Calculations performed for a range of temperatures also suggested interest-
ing differences. Specifically, increase in temperature also caused decreases in
chain end-to-end distances, as is illustrated in Figure 14.10. This may be due
at least in part to the fact that amorphous PE chains shrink upon increase in
temperature. More specifically, the temperature coefficient of the unperturbed
dimensions is dln<r2 > 0/dT= --lix 10 3 deg 1[47_49]. The nominal stress and
the reduced stress or modulus decrease correspondingly, as is shown in
Figures 14.11 and 14.12, respectively.

14.3.6. Relevance of cross linking in solution

The cases where the filler causes compression of the chain are relevant to
another area of rubberlike elasticity, specifically the preparation of networks
by cross linking in solution followed by removal of the solvent [57]. This is shown
schematically in Figure 14.13. Such experiments were initially carried out to
obtain elastoiners that had fewer entanglements and the success of this approach
was supported by the observation that such networks came to elastic equilib-
rium much more rapidly. They also exhibited stress-strain isotherms in elonga-
tion that were closer in form to those expected from the simplest molecular
theories of rubberlike elasticity.

In these procedures, the solvent disentangles the chains prior to their cross
linking, and its subsequent removal by drying puts the chains into a "super-
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contracted" state [57]. Experiments on strain-induced cr ystallization carried out
on such solution cross-linked elastorners indicated that the decreased entangling
was less important than the supercontraction of the chains, in that crystalliza-
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Figure 14.11. The effects of temperature on the nominal stress, f*, for the PE chains for
(a) no adsorption; (b) 2-bond adsorption

tion required larger values of the elongation than was the case for the usual
elastomers cross linked in the dry state [76,77]. More recent work in this area
has focused on the unusually high extensibilities of such elastoniers [78-80].
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In any case, the present simulations should help elucidate molecular aspects
of phenomena in this research area as well.
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Figure 14.13. Forming a "super-compressed" network by cross linking in solution, followed
by drying

14.3.7. Detailed descriptions of conformational changes during
chain extension

An illustration of this application involves the nominal stress for syndiotactic
polypropylene at T = 481 K as a function of elongation for different chain
lengths, for a filler radius of bA [40]. The Monte Carlo simulations were
performed using recently derived conditional bond probabilities for stereoregular
vinyl chains [81].

Some typical results obtained for chains having either 100 or 200 skeletal
bonds are shown elsewhere [40]. At the beginning of the elongation, the chains
of the two different lengths followed the same linear curve, which corresponds
to the elastomeric region. This linearity is consistent with the equation for the
deformation of a single chain in which the stress, f', is directly proportional
to its end-to-end distance, r [82]. Specifically,

f* = (3kT/<r 2 >0)r	 (5)

where <r 2 > 0 represents the mean-square unperturbed dimension of the chain.
A "plastic" region (characterized by large increases in stress) appeared at

lower elongations for chains having 100 skeletal bonds, as compared with those
having 200. Chains of 100 bonds required greater stresses to be elongated once
this critical point was reached, and this need for higher stresses can be explained
in terms of its end-to-end distance distribution [40]. Since the chains of 100
bonds are already more extended than the chains of 200 bonds, the amount
of additional elongation they can endure until the elastic region ends is more
limited. Once the plastic region is reached, the stress development showed a
non-linear character as the elongation was increased.

14.4. Ellipsoidal particles

14.4.1. General features

Non-spherical filler particles are also of considerable interest. Prolate (needle-
shaped) particles can be thought of as a bridge between the roughly spherical
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particles used to reinforce elastomers [83] and the long fibers frequently used
for this purpose in thermoplastics and thermosets [84]. Oblate (disc-shaped)
particles can be considered as analogues of the much-studied clay platelets used
to reinforce a variety of materials [85-96].

14.4.1.1. Regular arrangements of prolate ellipsoids

In one particularly relevant series of experiments, initially spherical particles
of polystyrene were deformed into prolate ellipsoids by (i) heating the elasto-
meric PDMS matrix in which they resided above the glass transition tempera-
ture of the PS, (ii) stretching the matrix uniaxially, and then (iii) cooling it
under the imposed deformation [97]. The technique is illustrated schematically
in Figure 14.14. It is important to note that this approach also orients the
axes of the non-elliptical particles, as shown in the top portion of the figure.
If desired, the orientation can be removed by dissolving away the host matrix,
and then re-dispersing the particles randomly within another polymer that
is subsequently cross linked. This is illustrated in the bottom portion of
the sketch.

Deform particles

Dissolve polymer matrix

Re-disperse Particles

Figure 14.14. Originally spherical filler particles being deformed into prolate (needle-shaped)
ellipsoids by stretching a polymer matrix in winch they reside. This in situ approach also
orients the axes of the deformed particles in the direction of the stretching. The orienta-
tion can be removed by dissolving away the host polymer matrix and then redispersing
the ellisoidal particles isotropically within anotheranother polymer (giving reinforcement that is

presumably isotropic)

Some relevant simulations [19,42] were presented as the moduli as a function
of reciprocal elongation for particles having various values of the radius and
loading volume fraction. The anisotropy in structure causes the values of the
modulus in the longitudinal direction to be significantly higher than those in
the transverse directions.
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These simulated results are in at least qualitative agreement with the experi-
mental differences in longitudinal and transverse moduli obtained experimental-
ly [97]. Quantitative comparisons are difficult, in part because of the non-
uniform stressstress fields around the particles after the (iefornrrng matrix is allowed
to retract.

14.4.1.2. Randomized arrangements of prolate ellipsoids

In this case, isotropic behavior is expected, due to the lack of orientation
dependence between the non-spherical particles and the deformation axis
regardless of the shapes of the particles. The simulated results confirmed this
expectation that the reinforcement from randomly-oriented non-spherical filler
particles is isotropic regardless of the anisometry of their shapes. There may
be difficulties on the experimental side in obtaining completely randomized
orientations (and dispersions), because of the tendency of non-spherical particles
to order themselves, particularly in the types of flows that accompany proces-
sing techniques or even the simple transfers of polymeric materials.

14.4.2. Oblate ellipsoids

In spite of their inherent interest, relativel y little has been done on fillers of
this shape.

14.4.2.1. Regular arrangements

The particles were again placed on a cubic lattice [20], and were oriented in a
way consistent with their orientation in PS-PDMS composites that were the
subject of an experimental investigation [98]. In general, the network chains
tended to adopt more compressed configurations relative to those of prolate
particles having equivalent sizes and aspect ratios. The elongation moduli were
found to depend on the sizes, number, and axial ratios of the particles, as
expected. In particular, the reinforcement from the oblate particles was found
to he greatest in the plane of the particles, and the changes were in at least
qualitative agreement with the corresponding experimental results [98]. In the
experimental study, axial ratios were controllable, since they were generally
found to be close to the values of the biaxial draw ratio employed in their
generation. The moduli of these amusotropic composites were reported, but only
in the plane of the biaxial deformation [98]. It was not possible to obtain moduli
in the perpendicular direction, owing to the thinness of the films that had to
be used in the experimental design.

14.4.2.2. Randomized arrangements

With regard to the simulations, it would be of considerable interest to investi -
gate the reinforcing properties of such oblate particles when they are randomly
oriented and also randomly dispersed. Such work is in progress [71].
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14.5. Aggregated particles

14.5.1. Real systems

The silica or carbon black particles used to reinforce commercial materials are
seldom completely dispersed [1-5], as is assumed in the simulations described.
As is shown schematically in Figure 14.15, the primary particles are generally
aggregated into relatively stable "aggregates' and these are frequently clustered
into less-stable arrangements called "agglomerates" [40].

Figure 14.15. Sketches of primary particles, aggregates, and agglomerates occurring in fillers
such as carbon black and silica

14.5.2. Types of aggregates for modeling

Simulations should be carried out on such more highly ordered structures, some
limiting forms of which are sketched in Figure 14.16 [71]. It is well known in
the industry that such structures are important in maximizing time reinforce-
ment., as evidenced by the fact that being too persistent in removing such
aggregates and agglomerates in blending procedures gives materials with less
than optimal mechanical properties [1-5].

P?..• •..•
(a)
	 (c)

	
(d)

Figure 14.16. Four illustrative types of aggregates: (a) globular: (h) chainlike; (c) star-shaped:
and ((I) branched
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14.5.3. Deformabilities of aggregates

Friedlander et al. have demonstrated that such aggregates have a remarkable
deformability, by carrying out elongation experiments both reversibly, and ir-
reversibly to their rupture points [99- 104]. This is of considerable importance,
since when these structures are within elastomeric matrices, their deformations
upon deformation of the filled elastomer means that they must contribute to
the storage of the elastic deformation energy. This would have to he taken into
account both in the interpretation of experimental results and in more refined
simulations of filler reinforcement.

14.6. Potential refinements

The characterized excluded volume effect is only one aspect of elastomer
reinforcement [6-12], but some additional effects could he investigated by addi-
tional modeling of the adsorption of the elastorner chains onto the filler surface.
The preliminary physisorpt ion results described above should obviously be
refined. Then, the calculations could be extended to include chemical adsorp-
tion by assuming that there are randomly-distributed, active particle sites inter-
acting very strongly with the chains (by a Dime 6-function type of potential).
If the distance between the chain (generated using the Monte Carlo method)
and the active site becomes less than the range of the short-range interactions,
then the chain would become chemisorbed. The distributioii of other active
sites on the filler surface and the Lennard-Jones interactions would determine
if the remaining parts of the chain are absorbed onto the surface. Simulations
for chains sufficiently long to partially adsorb onto several filler particles would
be especially illuminating, in that they could shed new light on the general
problem of polymer adsorption. The distribution of the chain contours between
the polymer bulk and various filler particles could also he of considerable
importance.

14.7. Conclusions

Although there are obviously unresolved issues, the broad overview presented
here should demonstrate the utility of simulations to give a better molecular
understanding of how fillers reinforce elastomeric materials. It is also hoped
that some of the unsolved problems described will encourage others to con-
tribute to elucidating this important area of polymer science and engineering.
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